
ARITHMETIC PROPERTIES OF DEL PEZZO SURFACES

DAMIANO TESTA

Written mental notes. These are just some rough notes meant as written mental
notes of what the course will cover.

Introduction

In this series of lectures, I will present some results on arithmetic properties of
del Pezzo surfaces over a field k. I will try to impose as few restrictions as possible
on k. Important fields to keep in mind are

• the complex numbers C;
• algebraically closed fields;
• finite fields Fq;
• p-adic fields Qp and their finite extensions;
• number fields.

I will recall and sometimes give proofs of facts on del Pezzo surfaces over alge-
braically closed fields. I will then take these facts as our guiding principles to figure
out what can be said over a field that is not necessarily algebraically closed.

Here is an outline of the course. We begin by studying the exceptional curves
on del Pezzo surfaces. Next, we focus on del Pezzo surfaces of degree at least 7.
The analysis shows that given a k-rational point on a del Pezzo surface, we can
often produce more k-rational points. This naturally leads to the question of k-
(uni)rationality for del Pezzo surfaces. We will see that del Pezzo surfaces of certain
degrees automatically have a k-rational point. Finally, we may touch upon Cox
rings of del Pezzo surfaces, universal torsors and Manin’s conjecture.

1. Background and the case of curves

Definition 1.1. Let k be a field and let X be a scheme over k. A k-rational point
on X is a morphism Spec k → X. We denote the set of all k-rational points of X
by X(k).

If X ⊂ An
k is affine and it is the vanishing set of polynomials f1, . . . , fr ∈

k[x1, . . . , xn], then a k-rational point on X is an n-tuple x = (x1, . . . , xn) ∈ kn

such that f1(x) = · · · = fr(x) = 0.

Lemma 1.2 (Lang-Nishimura). Let k be a field, let X,Y be varieties over k and
let ϕ : X 99K Y be a rational map. If X has a smooth k-rational point and Y is
proper, then Y has a k-rational point.

Proof. Proceed by induction on the dimension of X. If the dimension of X is 0, then
do the obvious. For the induction step, use the valuative criterion of properness to
show that a rational map from X to Y determines a rational map from any divisor
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on X to Y . Choose a divisor containing a smooth k-rational point of X as a smooth
point and conclude by induction. �

An immediate consequence of the Lang-Nishimura Lemma is that having a k-
rational point of a birational invariant among smooth proper varieties.

Corollary 1.3. If X and Y are smooth proper varieties defined over a field k,
then X has a k-rational point if and only if Y has a k-rational point.

Proof. Use the Lang-Nishimura Lemma and the symmetry of the assumptions. �

Let k be a field and let X be a smooth variety of dimension n defined over k.
We denote by ωX a dualizing sheaf on X and we call it the canonical line bundle.
Thus, the sheaf ωX is a line bundle isomorphic to

∧n
ΩX , the determinant of the

sheaf of 1-forms on X. We shall mostly use this for curves and surfaces, i.e. for
n ≤ 2.

Definition 1.4. A Fano variety over k is a smooth projective variety X defined
over k with ample anti-canonical line bundle (ωX)∨. The degree dX of X is the
positive integer dX = (−KX)d.

In this course, we will mostly be interested in the case of Fano varieties of
dimension 2, that is, del Pezzo surfaces, over general fields.

In our arguments, we will often switch between a field k and an extension of k,
often a fixed algebraic closure k. In doing so, we will want to keep track of what
changes and what stays constant. One of the most basic facts that we will use is
the following result.

Fact. Let k′ ⊃ k be an extension of fields. Let X be a projective variety over k and
let L be a line bundle on X. Denote by Lk′ the pull-back of L to the base change
Xk′ of X to k′. The k′-vector space H0(Xk′ ,Lk′) is isomorphic to the k′-vector
space H0(X,L )⊗k k

′.

The more general result with global sections replaced by an arbitrary cohomology
group of a quasi-coherent sheaf on X is also true (see Cohomology and base-change).
Nevertheless, the mentioned fact is enough for most of our applications. Indeed,
we can almost get away simply with knowing that the dimensions of the spaces of
global sections of line bundles are constant when extending the base field.

https://stacks.math.columbia.edu/tag/02KE
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Aside. Let us pause to think about “base rings”. Suppose that X is the vanishing
set of an ideal I in k[x1, . . . , xn]. There are at least three “base rings” that can, and

will, be relevant for this course.

(Tautological) Of course, we defined I to be an ideal in k[x1, . . . , xn], so certainly k is a

possible “base ring”.
(Geometric) We may want to allow ourselves to pick coordinates of points on the inter-

section of X with curves or surfaces, to extract coefficients of equations of

special curves on X, or more generally to be able to make finite extensions
of k. Thus, certainly also the collection of all finite extensions of k, i.e. an

algebraic closure k of k, is a possible “base ring”.
(Minimal) We may only want to look at the smallest subfield (or even the smallest

subring) k0 of k containing the coefficients of a set of generators of I. Again,

k0 is another good candidate for a “base ring”.

Really, we should make up our mind on what the base ring is and stick to the tau-
tological option. For instance, we may be in a situation in which X is defined over

the complex numbers by an equation with integer coefficients, and we want to reduce

modulo 2 to deduce properties over C. In such a situation, we may (re-)define a sur-
face over SpecZ with the same equation as X and we can now base change using

SpecF2 → SpecZ or SpecC → SpecZ.

Before looking at the surface case, we give a quick overview of what happens in
the case of Fano curves.

If the field k is algebraically closed, then a smooth projective curve over k with
ample anti-canonical line bundle (that is, ample tangent bundle) is isomorphic
to P1

k. Thus, we have a full classification, with only one geometric example.
Now, let C be a smooth projective Fano curve over an arbitrary ground field k.

The anti-canonical linear system |ω∨C | on C induces a rational map C 99K |ω∨C |∨. By
the previously mentioned Cohomology and base-change, we know that the linear
system |ω∨C | has dimension 2 and hence we obtain a rational map ι : C 99K P2

k. We fix

an algebraic closure k of k and base-change to k. The curve C becomes isomorphic
to P1

k
, the line bundle |ω∨C | becomes isomorphic to OP1

k
(2) and the rational map ι

becomes an isomorphism betwen P1
k

and a smooth plane conic. We deduce that ι
induces an isomorphism between the curve C and a smooth plane conic.

Observe that P1
k is certainly a Fano curve, regardless of whether or not the field k

is algebraically closed. The following exercise gives a characterisation of P1
k among

Fano curves.

Exercise 1.5. Let C be a Fano curve over a field k. The following are equivalent.

(1) The curves C and P1
k are isomorphic over k.

(2) There is a k-rational point on C.
(3) There is a line bundle on C of degree 1.
(4) There is a line bundle on C of odd degree.

[Hints. (1) =⇒ (2), use the Lang-Nishimura Lemma.
(2) =⇒ (1), realize C as a conic and use stereographic projection.
(2) =⇒ (3) =⇒ (4), easy.
(3) =⇒ (2), the vanishing set of any global section gives you a point.
(4) =⇒ (3), using a line bundle of odd degree and the canonical line bundle, produce
a line bundle of degree 1. ]

From the previous exercise, if C is isomorphic to P1
k over the field k, then C has

at least one k-rational point. We can therefore easily find examples of Fano curves
that are not isomorphic to P1

k.
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Exercise 1.6. The conic C ⊂ P2
Q defined by the equation x2 + y2 + z2 = 0 is a

Fano curve that is not isomorphic to P1
Q.

We are therefore naturally led to examine the question of whether or not a variety
has a rational point. Clearly, if a variety defined over a field k has a k-rational point,
then it also has a point over every field extension k′ of k. In the case in which the
ground field is Q, there are some natural extensions of Q that play an important
role. For instance, the real numbers R are the completion of Q with respect to
the familiar Euclidean absolute value on Q. Also, for every prime number p, there
is a p-adic absolute value on Q. The completion of Q with respect to the p-adic
absolute value is denoted by Qp and is called the field of p-adic numbers. These are
the only complete fields containing Q as a dense subfield (cf Ostrowski’s Theorem).

The observation that we made above about k-rational points and extensions ap-
plies to the completions of Q. We say that a variety X defined over Q is everywhere
locally soluble if the base change of X to R has an R-rational point and, for ev-
ery prime p, the base change of X to Qp has an Qp-rational point. Thus, if X
has a Q-rational point, then X is everywhere locally soluble. The converse to this
statement is usually false, but gives nevertheless an interesting perspective on the
set of rational points, in the case of varieties defined over Q. For instance, the
Hasse principle holds for a family F of varieties over Q if for every variety X in
the family F , either X has a Q-rational point, or there is a completion K of Q
such that the base-change X × SpecK has no K-rational points. The reason for
isolating complete fields is that there is an algorithm for deciding whether varieties
over complete fields have rational points or not.

A striking example where the Hasse principle holds is the case of conics. This is
a version of the famous Hasse-Minkowski Theorem (see the Wikipedia link for a
more general statement).

Theorem 1.7 (Hasse-Minkowski). Let C ⊂ P2
Q be a smooth conic. The curve C

has a Q-rational point if and only if C is everywhere locally soluble. Equivalently,
the Hasse principle holds for conics.

2. del Pezzo surfaces

Let k be a field.

Definition 2.1. A del Pezzo surface over k is a smooth projective Fano surface X
defined over k.

When the del Pezzo surface X is clear from the context, we often write d, drop-
ping the subscript X, for the degree dX of X.

Besides the fact that this is a series of lectures at the “Conference/Workshop on
del Pezzo surfaces and Fano varieties”, there is also a somewhat more mathematical
motivation for concentrating on del Pezzo surfaces. The Iskovskih-Manin Theorem
states that there are two kinds of minimal surfaces defined over a field k and such
that their base-change to an algebraic closure of k is rational: del Pezzo surfaces
and conic bundles. We will not even define conic bundles, although they play a role
also in the study of del Pezzo surfaces.

We recall a few facts about del Pezzo surfaces that we will use without proof.

Fact. If the field k is algebraically closed field, then any del Pezzo surface is iso-
morphic to either P1

k × P1
k or to the blow-up of P2

k at r ∈ {0, . . . , 8} points in

https://en.wikipedia.org/wiki/Ostrowski%27s_theorem 
https://en.wikipedia.org/wiki/Hasse_principle
https://en.wikipedia.org/wiki/Hasse%E2%80%93Minkowski_theorem
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general position. The “general position” condition is completely explicit: r points
p1, . . . , pr ∈ P2

k are in general position if

• r ≤ 8;
• there is no line in P2

k containing three of the points;
• there is no conic in P2

k containing six of the points;
• there is no cubic in P2

k containing eight of the points that is also singular
at one of them.

We will see that the degree of a del Pezzo surface X is a good indication of how
complicated X can be. Intuitively, the larger the degree, the easier the surface.

Exercise 2.2. Let k be a field.

(1) Show that P1
k × P1

k is a del Pezzo surface.
(2) Show that the blow-up of P2

k at r points is a del Pezzo surface if and only
if the points are in general position.

(3) Show that the blow-up of P1
k×P1

k at one point is isomorphic to the blow-up
of P2

k at 2 distinct points.
(4) Show that the degree of P1

k × P1
k is 8, and the degree of the blow-up of P2

k

at r points is 9− r.

Fact 2.3. Let k be an algebraically closed field and let X be a smooth projective
surface over k. The surface X is a del Pezzo surface if and only if either X is
isomorphic to P1

k × P1
k or there are r ≤ 8 points in P2

k in general position such
that X is isomorphic to the blow-up of P2

k at these points.

Exercise 2.4. The Fano plane is an apt and confusing name for the finite projective
plane P2

F2
(F2) over F2. Determine the largest number of points in general position

in the Fano plane.
If you feel like doing an exercise that I have not tried, for every finite field F,

determine the largest number of points in general position in P2
F.

We denote by KX a canonical divisor on X. Thus, KX is an integral linear
combination of irreducible divisors on X such that the line bundle associated to KX

is isomorphic to the canonical line bundle ωX '
∧2

ΩX . Since X is a del Pezzo
surface, the divisor −KX is ample. In fact, more is true.

Fact. Let X be a del Pezzo surface and denote by d = (KX)2 its degree. The
anticanonical linear system |ω∨X | = P

(
H0(X,ω∨X)

)
is isomorphic to a projective

space of dimension d. Thus, we obtain a rational map κ : X 99K |ω∨X |∨ ' Pd which

• is a closed embedding, if the degree of X is at least 3 (ω∨X is very ample);
• is a morphism, if the degree of X is 2 (ω∨X is base-point free);
• has a unique base-point, if the degree of X is 1.

Thus, del Pezzo surfaces of degree d at least 3 are (isomorphic to) smooth projective
non-degenerate surfaces in Pd

k of degree d. A del Pezzo surface of degree 2 is the
double cover of P2

k branched over a plane quartic. A del Pezzo surface of degree 1
is the double cover of the complete intersection of a quadric cone Q in P3

k branched
over the vertex of the cone Q and the intersection of Q with a cubic surface.

We call the rational map determined by the anti-canonical linear system the anti-
canonical rational map. Similarly, we will talk about the anti-canonical embedding
(for degree at least 3) and the anti-canonical morphism (for degree at least 2).

https://en.wikipedia.org/wiki/Fano_plane
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Often, we identify the target of the anti-canonical rational map with Pd
k and we

still talk about the anti-canonical rational map. In this case, the use of the definite
article “the” is imprecise, since it neglects the explicit choice of identification of the
dual of the linear system with projective space. Nevertheless, we still prefer the
imprecise usage.

Exercise 2.5 (Characteristic not 2). Let k be a field of characteristic different
from 2. Let Y, Y ′ be surfaces over k and let π : Y ′ → Y is a double cover (that is
a finite morphism of degree 2). Assume that Y is smooth and Y ′ is normal. Show
that the surface Y ′ is smooth if and only if branch locus of π is smooth.

As a consequence, every del Pezzo surface of degree 2 over a field of characteristic
different from 2 is isomorphic to a double cover of P2

k branched over a smooth quartic
curve.

Exercise 2.6 (Characteristic 2). Let k be a field of characteristic 2. Show that
the branch locus of the anticanonical morphism on a del Pezzo surface of degree 2
defined over k is a double conic. Show that for any conic C ⊂ P2

k over k there is a
del Pezzo surface for which the branch locus of the anti-canonical morphism is C.

Exercise 2.7. If X is a del Pezzo surface of degree 1, then the blow-up of the
base-point of the anticanonical linear system is a rational elliptic surface.

For the following exercise, you will need a little more machinery.

Exercise 2.8. Let X be a del Pezzo surface of degree 1. The linear system as-
sociated to (ω∨X)⊗2 identifies X with the double cover of a quadric cone Q in P3

k,
branched over the cone vertex of Q and a sextic curve that is the intersection of Q
with a cubic surface.

With a view towards being more concrete and to appeal to more projective
geometry, we will often talk about anti-canonical divisors −KX on the del Pezzo
surface X. As we have seen, the anti-canonical linear system is never empty and
sometimes we may implicitly have an effective anti-canonical divisor in mind, when
we talk about −KX . Also, we may sometimes imprecisely talk about the anti-
canonical divisor, even though there is not necessarily a preferred one, not even
among effective ones.

2.1. Picard group and intersection pairing. We will see that the Picard group
PicX encodes a vast amount of geometric and arithmetic information. We briefly
recall the definition of the Picard group for a smooth projective variety and, in the
case of surfaces, of the intersection pairing on PicX.

Let X be a smooth projective variety over a field k. Let DivX denote the free
abelian group generated by the classes of the integral divisors in X. The subset of
DivX consisting of all divisors that are linearly equivalent to 0 forms a subgroup of
DivX. The quotient of DivX by the subgroup of divisors linearly equivalent to 0
is the Picard group of X. For del Pezzo surfaces, the group PicX is a free finitely
generated abelian group. In general, this group has a natural scheme structure.
Neglecting the issue of non-reducedness, the connected component of the identity
of PicX is an abelian variety and the quotient of PicX by the connected component
of the identity (the group of components) is a finitely generated abelian group.

We now restrict to the case of surfaces. The intersection pairing is a bilinear
pairing − · − : DivX ×DivX → Z with the following properties:
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• if C,D ⊂ X are reduced curves without common components, then C ·D
is the degree of the scheme-theoretic intersection C ∩D;
• if C,C ′, D ⊂ X are curves with C,C ′ linearly equivalent, then the equality

C ·D = C ′ ·D
holds.

The kernel of the intersection pairing contains, by definition, all divisors linearly
equivalent to 0. Hence, the intersection pairing descends to a pairing on the Picard
group PicX. We call intersection pairing also the pairing on PicX induced by
intersection pairing on DivX and maintain the same symbol. For a general smooth
projective surface X, the intersection pairing on PicX may still have a non-trivial
kernel. Nevertheless, for a del Pezzo surface the intersection pairing on PicX is
non-degenerate.

Let C ⊂ X be a reduced curve and denote by pa(C) the arithmetic genus of C. A
useful property of the intersection pairing is the formula C2 +C ·KX = 2pa(C)−2.
This identity is often called the adjunction formula.

I would like to make explicit what is the effect of changing the ground field
on PicX and on the intersection pairing. Let X be a smooth projective surface
defined over a field k and let k′ ⊃ k be a field extension. Denote by X ′ the base
change of X to Spec k′. Clearly, every curve C on X (this implicitly implies that
the curve is defined over k), also determines, by base change, a curve C ′ on X ′.
This produces a natural homomorphism PicX → PicX ′ that is injective (see, for
instance, the Stacks Project Lemma 32.30.3). Naturally, even if the curve C is
irreducible, the curve C ′ need not be. This is not a problem for the Picard group,
but it highlights a potential source of differences between PicX and PicX ′: the
classes of the irreducible components of C ′ need not be in the image of PicX →
PicX ′.

Exercise 2.9. Let C ⊂ P2
R be the conic curve with equation x2 + y2 + z2 = 0.

The Picard group of C is isomorphic to Z, generated, for instance, by the class of
a section of C by a line. The inclusion PicC → PicCC is not surjective: what is
the index of PicC in PicCC?

Exercise 2.10. Let a ∈ R \ {0} be a non-zero real number and let Qa ⊂ P3
R be the

smooth quadric surface with equation x2 + y2 + az2 = w2.

• Compute the Picard group of the base change (Qa)C of Qa to C.
• The Picard group of Q1 is isomorphic to Z, generated by the class of a

plane section.
• The Picard group of Q−1 is isomorphic to Z ⊕ Z, generated by the two

rulings on Q−1.
• What is the Picard group of Qa, for the remaining values of a? Describe

the inclusion PicQa → Pic(Qa)C.
• How do your answers change if we choose a to be a rational number and

we define Qa over Q instead?

We have therefore seen examples with the inclusion PicX → PicX ′ is not prim-
itive, is not of finite index, is an isomorphism. If you did not already do so, it may
be useful to think about whether and how the presence of rational points interacts
with your answers. In particular, when there are points, you can define divisors by
considering intersections with the tangent space at rational points.

https://stacks.math.columbia.edu/tag/0BEG
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2.2. Exceptional curves. Using the intersection pairing, we define the curves that
will keep us busy for quite a bit.

Definition 2.11. Let X be a smooth projective surface over a field k. An excep-
tional curve on X is a smooth projective curve E ⊂ X such that E ·KX = E2 = −1.

A consequence of this definition and the adjunction formula is that the arithmetic
genus of an exceptional curve is 0: the curve E is a Fano curve! Moreover, the
restriction to E of the canonical line bundle on X is a line bundle on E of degree −1.
We saw in Exercise 1.5 that E is therefore isomorphic to P1

k over k.
Of course, a smooth projective surface need not contain any exceptional curve,

even if it is a del Pezzo surface. For instance, neither P2
k nor P1

k × P1
k contain any

exceptional curves. Nevertheless, at least over an algebraically closed field, these
are the only del Pezzo surfaces that do not contain an exceptional curve. Over
a general field k, it may happen that there are exceptional curves defined over k,
but that none of these are defined over k. Indeed, for instance over number fields,
there are ways of quantifying this statement (Hilbert Irreducibility Theorem and
thin sets) and deduce that this usually the case.

Fact 2.12. Let X be a smooth surface over a field k and let E ⊂ X be an excep-
tional curve. There is a smooth surface X ′ over k with a point p ∈ X(k) and a
proper birational morphism π : X → X ′ such that

• the morphism π is an isomorphism away from p;
• the fiber of π above p is the exceptional curve E;
• the formula KX = π∗KX′ + E holds;
• if X is projective, then (KX′)2 = (KX)2 + 1.
• if X is a del Pezzo surface, then X ′ is a del Pezzo surface.

These facts justify our interest in exceptional curves. First, exceptional curves
are precisely the result of a blow-up and can therefore be blown down. Second, the
square of the canonical divisor increases by 1 in a blow-down. Thus, if X is a del
Pezzo surface of degree d over field k and it contains an exceptional curve, then
we can blow down the exceptional curve and obtain a del Pezzo surface of higher
degree (and hence likely easier).

We begin by analyzing the exceptional curves on blow-ups of P2
k at r ≤ 8 general

k-rational points. By Fact 2.3, these are del Pezzo surfaces and conversely, over an
algebraically closed field, every del Pezzo surface is of this form, up to isomorphism.
As we mentioned, there are no exceptional curves on P2

k.

Aside. Here is a fun example to think about, that plays with the issue of del Pezzo

surfaces and blow-ups of P2
k. The Fermat equation x3 + y3 + z3 + w3 = 0 describes

a smooth cubic surface F in P3
F2 . Thus, F is a del Pezzo surface of degree 3 over F2

and as such, it is the blow-up of P2
F2

at 6 points in general position. Nevertheless, we

saw in Exercise 2.4 that the Fano plane does not have 6 points in general position. We
conclude that the Fermat surface F over F2 is not the blow-up of P2

F2 at 6 points in

general position. Of course, any smooth cubic surface, or even any del Pezzo surface
of degree at most 4, over F2 would highlight the same point.

Let r ≤ 8 be a non-negative integer, let p1, . . . , pr be k-rational points of P2
k

in general position and let Xr denote the blow-up of P2
k at these r points. The

notation for Xr already suggests that the specific location of the blown up points
will not play a role in our considerations: this is true, even though the surfaces
obtained by blowing up P2

k at different choices of points may be non-isomorphic.

https://en.wikipedia.org/wiki/Hilbert%27s_irreducibility_theorem 
https://en.wikipedia.org/wiki/Thin_set_(Serre)
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By construction, the exceptional divisors E1, . . . , Er over the points p1, . . . , pr are
exceptional curves on Xr.

Exercise 2.13. The Picard group of Xr is isomorphic to Zr+1. A basis of PicXr

consists of the class ` of the inverse image of a line in P2
k and the classes e1, . . . , er

of the r exceptional divisors E1, . . . , Er over the blown-up points. The intersection
pairing among the elements of this basis is

` · ` = 1; ` · e1 = ` · er = 0; ei · ej =

{
−1, if i = j;
0, if i 6= j.

Let `, e1, . . . , er be the basis of PicXr constructed in the previous exercise, so
that every divisor class on Xr is of the form

(1) a`−
r∑

i=1

aiei,

with a, a1, . . . , ar integers. Note the slightly unusual choice of negative signs in
front of the coefficients a1, . . . , ar: this choice is of course immaterial, but, as a
partial justification, the coefficients of e1, . . . , er are negative for classes of integral
curves different from e1, . . . , er. To simplify the notation, we write (a; a1, . . . , ar)
for the class (1).

Exercise 2.14. The class of the anticanonical divisor on Xr is

−KXr = 3`− (e1 + · · ·+ er) = (3; 1, . . . , 1).

We are now ready to find all the exceptional curves on Xr.

Exercise 2.15. Table 1 lists the classes e ∈ PicX8 satisfying the equations

e2 = −1 e ·KX8 = −1,

up to permutation of the coordinates a1, . . . , a8. To obtain the classes on a del
Pezzo surface Xr when r ≤ 7, simply drop the appropriate number of coordinates
equal to 0.

(0 ; -1 , 0 , 0 , 0 , 0 , 0 , 0 , 0)

(1 ; 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0)

(2 ; 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0)

(3 ; 2 , 1 , 1 , 1 , 1 , 1 , 1 , 0)

(4 ; 2 , 2 , 2 , 1 , 1 , 1 , 1 , 1)

(5 ; 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1)

(6 ; 3 , 2 , 2 , 2 , 2 , 2 , 2 , 2)

Table 1. Exceptional curves on the del Pezzo surface Xr

By definition, the class of an exceptional curve on Xr must appear in Table 1. All
that we are missing now is to know that these classes really do represent exceptional
curves.
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Exercise 2.16. If e ∈ PicXr is a class satisfying e2 = e ·KXr
= −1, then e is the

class of a unique exceptional curve on Xr.
[Hint. Use Riemann-Roch and Serre duality to show that e is the class of a single
curve on Xr. Then, use the ampleness of −KXr

to deduce that this curve is
irreducible and hence smooth.]

We summarize what we proved in the following Theorem.

Theorem 2.17. Let k be a field and let Xr be the blow-up of P2
k at r ≤ 8 points in

general position. The exceptional curves on Xr are the strict transforms of

(1) lines containing two of the blown up points (r ≥ 2);
(2) conics containing five of the blown up points (r ≥ 5);
(3) cubics containing seven blown up points and singular at one of them (r ≥ 7);
(4) quartics containing the eight blown up points and singular at three of them

(r = 8);
(5) quintics containing the eight blown up points and singular at six of them

(r = 8);
(6) sextics singular at all eight blown up points and with a triple point at one

of them (r = 8).

r Number of exceptional curves

0 0 = 0

1 1 = 1

2 3 = 2 +
(
2
2

)
3 6 = 3 +

(
3
2

)
4 10 = 4 +

(
4
2

)
5 16 = 5 +

(
5
2

)
+
(
5
5

)
6 27 = 6 +

(
6
2

)
+
(
6
5

)
7 56 = 7 +

(
7
2

)
+
(
7
5

)
+
(
7
1

)
8 240 = 8 +

(
8
2

)
+
(
8
5

)
+ 8 · 7 +

(
8
3

)
+
(
8
6

)
+
(
8
1

)
Table 2. Exceptional curves on the del Pezzo surface Xr

Theorem 2.17 gives the list of exceptional curves on Xr over k. Because the list
is independent of k, there are no further exceptional curves on Xr, even allowing
for an extension of the ground field.

Before we move on exceptional curves to del Pezzo surfaces that are not neces-
sarily the blow-up of P2

k over the ground field k, we introduce one more tool.

Definition 2.18. The graph of exceptional curves on Xr is the finite, undirected,
loopless (multi-)graph with vertices indexed by the exceptional curves on Xr and
with e · f edges joining the vertices corresponding to the exceptional curves e, f
on Xr.



ARITHMETIC PROPERTIES OF DEL PEZZO SURFACES 11

Let Γr be the graph of exceptional curves on Xr. Observe that Γr is simple
(that is, it does not have multiple edges) if r ≤ 6. The multi-graph Γ7 has 28 pairs
of vertices joined by double edges. The multi-graph Γ8 has 6720 pairs of vertices
joined by double edges and 120 pairs of vertices joined by triple edges.

Exercise 2.19. Show that

(1) Γ2 is a tree with 3 vertices;
(2) Γ3 is a hexagon;
(3) Γ4 is the Petersen graph.

The remaining simple graphs of exceptional curves also have names: Γ5 is the (5-
regular) Clebsch graph and Γ6 is the Schläfli graph. The complement of the Gosset
graph is the graph obtained from the multi-graph Γ7 by replacing each double edge
with a simple edge. The multi-graph Γ8 may or may not be related to the Gosset
polytope with Coxeter symbol 421. I did not check this, but you can if you want
to: if you do, then let me know!

We now turn our attention to an arbitrary del Pezzo surface X of degree d over
a field k. By “arbitrary”, we mean that we do not require it to be a blow-up of P2

k.
Our initial goal is to understand over which extensions of k the del Pezzo surface X
is isomorphic to the blow-up of P2

k.

Definition 2.20. Let X be a del Pezzo surface X over a field k and let X be
the base change of X to the algebraic closure k of k. The surface X is split if the
inclusion PicX → PicX is an isomorphism.

Exercise 2.21. Show that a del Pezzo surface X of degree d over a field k is split
if and only if either X is isomorphic to P1

k × P1
k, or X is isomorphic over k to the

blow-up of P2
k at 9− d points in general position.

Fix an algebraic closure k of k and denote by X the base change of X to k.
Regardless of whether or not X is split, the classes of the exceptional curves on X
inject, under the inclusion PicX → PicX, in the set of classes of exceptional curves
on X. Let Gal(k) denote the absolute Galois group of k, that is the group of all field
automorphisms of k that restrict to the identity on k. Since X is defined over k,
the elements of the Galois group Gal k send any subscheme Y ⊂ X to a subscheme
of X. It is easy to convince yourself that this defines an action of Gal(k) on PicX
that preserves the intersection pairing. By construction, the image of PicX in
PicX is fixed by the action of the Galois group. In particular, the canonical divisor
class in PicX is fixed by the action of Gal(k).

Exercise 2.22. Give an example of a smooth projective variety Z defined over a
field k and a divisor class d ∈ PicZ such that d is fixed by the action of the Galois
group Gal(k) and d is not in the image of PicZ.
[Hint. You can choose Z to be a Fano curve.]

Let Isom(X) = Isom(PicX,KX) be the group of automorphisms of the Picard
group of X that preserve the intersection pairing and fix the class of the canonical
divisor. From the previous discussion, we deduce that there is a homomorphism

Gal(k)→ Isom(PicX,KX).

Exercise 2.23. In this exercise, we show that the group Isom(X) is finite.

• Compute Isom(P1
k × P1

k).

https://en.wikipedia.org/wiki/Petersen_graph
https://en.wikipedia.org/wiki/Clebsch_graph
https://en.wikipedia.org/wiki/Schl%C3%A4fli_graph 
https://en.wikipedia.org/wiki/Gosset_graph
https://en.wikipedia.org/wiki/Gosset_graph
https://en.wikipedia.org/wiki/4_21_polytope
https://en.wikipedia.org/wiki/4_21_polytope
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• If X is the blow-up of P2
k at r ≤ 8 points in general position, then show

that Isom(X) is isomorphic to the automorphism group of the graph Γr.
• Deduce that if X is a del Pezzo surface of degree 1, then the order of

Isom(X) is 696729600 = 214 · 35 · 52 · 7.

[Hints. When do the exceptional curves generate PicX?
696729600 = 240 · 56 · 27 · 16 · 10 · 6 · 2 · 1.]

Lemma 2.24. If X is a del Pezzo surface over a field k and e ∈ PicX is the class
of an exceptional curve that is fixed by the action of the Galois group Gal(k), then e
is the divisor class of an exceptional curve on X.

Proof. Let d = (KX)2 be the degree of X. We will only argue this if

• the anti-canonical linear system is very ample (that is, d ≥ 3); and
• the field k is perfect.

Neither of these assumptions is necessary, but they will allow us to give an argument
using classical projective geometry.

Using the anti-canonical embedding, X maps to a surface in Pd
k and every ex-

ceptional curve on X maps to a line. Thus, the Fano scheme F (X) of lines on X
is a finite subscheme of the Grassmannian of lines in Pd

k. The k-point η of F (X)
corresponding to the exceptional divisor e is therefore fixed by the Galois group.
It follows that the Plücker coordinates of η fixed by the Galois group are hence
contained in a purely inseparable extension of k. By the assumption that the field
is perfect, we deduce that η is a k-rational point of the Grassmannian. We conclude
that there is a line defined over k corresponding to e and we are done. �

Aside. In the proof of the previous lemma, we made two simplifying assumptions.

First, we used that the exceptional curves on X could be viewed as lines under the
anti-canonical embedding to parametrize them using a Grassmannian. When the anti-

canonical linear system is not ample, then we can replace it by a very ample multiple

and use an appropriate Hilbert scheme, instead of the Grassmannian. Second, we used
the assumption on the ground field being perfect to deduce that the coordinates of

the point corresponding to e were contained in the ground field, since they were fixed

by the Galois group. With a bit of thought, we have constructed a zero-dimensional
scheme Z over k (in a Grassmannian or a Hilbert scheme) whose support consist of a

single point (corresponding to e). This is very close to having found a k-rational point:
all that we are missing is the information that the degree of Z is 1. If we know that
the scheme Z is smooth, then we can conclude. This is true for exceptional curves on

del Pezzo surfaces, since their “deformations are unobstructed”.

Exercise 2.25. Find an example of a scheme Z over a field k and an extension
k′ ⊃ k such that

• Z is reduced;
• Z ×Spec k Spec k′ is not reduced.

[Hint. You can choose Z to be zero-dimensional.]

There is also a related fact, that we will not need, but we state it, because of its
usefulness in practice.

Fact 2.26. Let X be a smooth projective variety defined over a field k and let k be
an algebraic closure of k. If X(k) is not empty, then the inclusion PicX → PicX
is an isomorphism.

To structure our approach, we introduce the following notion.
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Definition 2.27. A variety X over a field k is k-rational if X and PdimX
k are

birational using a map defined over k. A variety X over a field k is k-unirational if
there is an integer n and a dominant rational map Pn

k 99K X defined over k.

Theorem 2.28. A del Pezzo surface X of degree 9 over a field k is k-rational if
and only if X has a k-rational point.

Sketch of proof. One direction is clear: regardless of what the field k is, the projec-
tive plane P2

k always has k-rational points.
Suppose that X is a del Pezzo surface of degree 9 with a k-rational point p. First,

we show that there is at least one more point on X. Indeed, the anti-canonical linear
system is a 9-dimensional projective space of plane cubics defined over k. The linear
subsystem corresponding cubics singular at p is defined over k and has dimension 7.
Let C be a geometrically irreducible element of this linear system (is there one such
element? What happens if k is finite?). The normalization C of C is therefore a
Fano curve with a line bundle of odd degree. Thus C is isomorphic to P1

k, and
hence C has k-rational points away from p (again, what happens if k is finite?).
We deduce that there is a k-rational point q on X different from p.

Under the anti-canonical linear system, the surface X embeds in P9
k. Denote

by HX the closed subscheme of the Hilbert scheme of twisted cubics in P9
k that are

contained in the image of X. The scheme HX is defined over k, since X is, and it is
3-dimensional, since, over k it corresponds to the linear system of lines in X ' P2

k
.

Moreover, the closed subscheme ofHX consisting of twisted cubics containing both p
and q is zero-dimensional and of degree 1 (check smoothness!): we just proved that
the line L ⊂ X through p and q is defined over k. We conclude that X is isomorphic
to P2

k, using the morphism associated to the linear system |L|. �

Aside. Forms of projective space over k, that is Brauer-Severi varieties can also be

studied using Brauer groups. We will not pursue this direction.

We now give a few easy examples of how we can use the information on Isom(X).

Theorem 2.29. Let X be a del Pezzo surface of degree 8. Either X is isomorphic
to P1

k
×P1

k
, or X is isomorphic over k to the blow-up of P2

k at one k-rational point.

Proof. If X is isomorphic to P1
k
× P1

k
, then there is nothing to prove. Suppose that

this is not the case. By Fact 2.3, we deduce that X is isomorphic to the blow-up
of P2

k
at one k-rational point and hence X contains a single exceptional curve E.

By Exercise 2.23, the class of E is fixed by the Galois group and by Lemma 2.24,
the exceptional curve E is defined over k and we can therefore blow it down to
obtain a del Pezzo surface of degree 9 with a k-rational point. �

Exercise 2.30. Let X be a del Pezzo surface of degree 8 over k. Suppose that X
is isomorphic to P1

k
× P1

k
. If X contains a k-rational point, then X is k-rational.

Theorem 2.31. Let X be a del Pezzo surface of degree 7. There is a birational
morphism π : X → P2

k. The morphism π is the simultaneous blow up of two distinct
points of P2

k that are k′-rational points, where k′ ⊃ k is an extension of degree at
most 2.

Sketch of proof. The graph of exceptional curves of X is the tree with 3 vertices Γ3.
The group Isom(X) therefore has order two: there is a subgroup of index at most 2
in the Galois group Gal(k) that acts as the identity on PicX. Such a subgroup

https://en.wikipedia.org/wiki/Severi
https://en.wikipedia.org/wiki/Brauer_group
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corresponds to an extension k′ ⊃ k if degree at most 2. The base-change X ×k

Spec k′ is thus isomorphic to the blow up of P2
k′ at two k′-rational points. Argue

that the line joining these two points is defined over k. �

We can already start having some expectations on del Pezzo surfaces, from the
evidence of the large degree surfaces that we examined:

(1) they sometimes have a k-rational point, regardless of their field of definition;
(2) the existence of a k-rational point seems imply that they are k-rational.

Indeed, we saw that del Pezzo surfaces of degree 7 always have a point. Also,
del Pezzo surfaces of degree 8 that are k isomorphic to the blow-up of P2

k
at two

points always have a rational point. We also saw that del Pezzo surfaces of degree 1
necessarily have a rational point: the base point of the anti-canonical linear system.
There are two further important results that we state here.

Fact 2.32 (Enriques, Swinnerton-Dyer). Every del Pezzo surface of degree 5 has
a k-rational point.

Fact 2.33 (Segre, Manin). Let X be a del Pezzo surface of degree at least 2
over a field k and let p be a k-rational point on X. If the degree of X is 2, then
assume that p is not contained either on the ramification locus of the anti-canonical
morphism, nor on 4 exceptional curves, defined over k. Then X is k-unirational.

So far, we only saw examples of k-rationality. We outline a k-unirationality
construction in the case of del Pezzo surfaces of degree 3, which is also Segre’s
original argument for cubic surfaces with a point.

Exercise 2.34. Let X be a smooth cubic surface over a field k and let p be a
k-rational point on X. Let Cp ⊂ X be the intersection of X with the tangent space
to X at p.

(1) Show that Cp is geometrically reduced.
(2) If C is geometrically integral, then show that C is k-rational (and singular).
(3) If C is reducible over k, then show that there is a line L contained in C

that is defined over k and is k-rational.
(4) If C is irreducible over k and reducible over k, then show that there are 3

lines through p that are defined over k and permuted transitively by Gal(k).
(5) In Case (2), repeating the construction of the tangent plane starting with

the generic point of C shows that X is k-unirational.
(6) In Case (3), the tangent plane to X at a general point q on the line L

intersects X along L and a smooth conic Q containing q. Thus, the conic Q
is k-rational and the family of such conics parameterized by the points on
the line L produces a k-unirational parameterization of X..

The argument in Case (4) is more elaborate. Segre’s proof uses that the field is
infinite (or at least sufficiently large) to find a suitable different point. A point on
a cubic surface contained in 3 lines is called an Eckardt point . A cubic surface need
not have any Eckardt points, not even over an algebraically closed field. Indeed, in
the moduli space of cubic surfaces, the ones containing an Eckardt point is a divisor.
Thus, the previous exercise works for a general cubic surface, with no assumption
on the position of the point!

There is an alternative unirationality construction for cubic surfaces with a point
due to Kollár that works uniformly over every field.
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